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ABSTRACT

The November 1981 Technical Reportl (subsequently designated TR)
gave a detailed account of the nonlinear viscoelastic behavior of ice, and the
construction of differential operator relations with the minimal ingredients
necessary to describe the observed qualitative response. It was shown that
biaxial test data are essential for the construction of a constitutive
relation to describe the deviatoric (shear) response of an incompressible
material. Until biaxial data are available, simplifying assumptions to
restrict the tensor structure of the relation must be made so that correlation
with the uniaxial data determines the remaining response coefficients. During
this phase we have supposed that an appropriate differential relation is
available and have examined the formulation of various prototype boundary-
value problems in plane stress and plane strain, and methods of solution.

Part I of this report presents the construction of a small strain,
small rotation approximation of the nonlinear differential relation for a
viscoelastic solid; that is, neglecting strain and rotation compared to unity,
but retaining the essential nonlinear character of the response coefficients.
Elastic compressibility is included, but it is assumed that elastic dilatation
and the instantaneous elastic shear strain are small compared to typical creep
strains of order a few percent, which introduces a small parameter e measuring
the relative magnitudes of elastic and creep strains. The parameter € arises
in a normalized dimensionless formulation of the constitutive relation, and
must be monitored carefully in numerical approximations of the time-degivative
balances. The initial modulus at constant strain rate has magnitude € in
the normalized variables. Plane stress and plane strain equations are spelled
out, together with an implicit finite difference scheme for the time deriva-
tives which reduce the system to a sequence of plane elasticity problems for a
material with nonhomogeneocus moduli. A set of prototype boundary-value
problems is described. First, the impact of a moving ice plate with a plane
rigid wall which compresses the plate during deceleration, to be followed by
full or partial rebound. A generalization is the indentation of a smooth
continuously curving structure. Next is the situation when an ice plate
frozen to a rigid inclusion is set in motion to investigate the contact
stresses. Finally, a scheme to determine the in-plane stresses in a uniformly
stressed region by embedding an elastic disk and measuring its boundary
displacements.

Part II examines the uniaxial. stress configuration described by the
differential relation and compares it to nonlinear elastic and linear
viscoelastic models which each exhibit a crucial feature of the nonlinear
viscoelastic relation; namely, the large initial modulus compared to subse-
quent stress-strain ratios. The uniaxial impact problem is analyzed for each
model. Explicit analytic solutions are obtained for linear elastic and linear
viscoelastic materials; a solution requiring a simple numerical quadrature is
given for the nonlinear elastic model, but a finite difference (or other)
procedure is required for the nonlinear viscoelastic model. Being much
simpler than the two-dimensional problems, it would serve as a numerical
stability and accuracy test for the plane stress and strain program.

1Morland, L. W. (1981), Mechanical Properties of Sea Ice Theoretical Phase,
September 1980-November 1981, Consultants report submitted to Shell
Development Company, confidential until January 1, 1985.
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Part III derives linear viscoelastic solutions for the embedded
rigid disk and elastic disk problems mentioned above, without calculations for
explicit models. The report closes with some Concluding Remarks highlighting
the theoretical progress and indicating possible lines of further development.

The work described here was completed by Professor L, W. Morland of
the University of East Anglia in the United Kingdom while acting as a
consultant to Shell Development Company. This report was completed as part of
Phase II of the Mechanical Properties of Sea Ice program and should be of
interest to engineers concerned with the constitutive modeling of ice.
t.

KEY WORDS: sea ice, mechanical property, finite difference method,
deformation, shear, offshore structure, approximation,
viscoelastic property, stress, strain, nonlinear, solid, axial
loading, boundary condition (math), elasticity, ice movement,
circular motion
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SMALL DEFORMATION OF A NONLINEAR VISCOELASTIC SOLID
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TECHNICAL PROGRESS REPORT BRC 104-85

MECHANICAL PROPERTIES OF SEA ICE - PHASE 2:
THEORETICAL INVESTIGATIONS

BY

L. W. MORLAND

INTRODUCTION

In many ice plate-structure interactions, the deformation of the

ice, both strain and rotation, will remain relatively small prior to crushing
or at least during an initial phase while peak stresses are reached. Strainsg
of under one percent are associated with peak stresses in uniaxial stress
configurations, and reach only a few percent after considerable relaxation.
The small deformation theory implies small rotation as well, and while small
strain finite rotation applications may also be of interest, the corresponding
approximation does not yield the same degrees of simplification. Assuming
small deformation, current particle position may be identified with its
reference position for the application of field equations and boundary
conditions, and a finite deformation strain tensor may be expressed in terms
of a small strain from the undeformed configuration. However, the significant
nonlinear response of ice even at small strain requires response coefficients
in the adopted differential operator relation which are not constants, but
vary with invariants of both the strain and stress. Appropriate quadratic
invariants of strain are required to measure the amount of shear which is
regarded as the physical basis of the nonlinear résponse.

A first order differential relation between stress, stress-rate,
strain, and strain-rate is adopted for the deviatoric (shear) viscoelastic
response, and an elastic compressibility relation is included. The deviatoric
relation is the nonlinear viscoelastic solid model discussed in the November
1981 Technical Report (hereafter abbreviated to TR). This contains the mini-
mal structure necessary to describe the known qualitative uniaxial stress
response, but the response coefficients and their dependence on stress and
strain must be considerably restricted to be determined by uniakial data. The

tensor (or directional) structure awaits confirmation or modification by
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two-dimensional data, or indirectly by comparison of observation and solution
of boundary value problems.

The conventional linearization of deformation yields an additive
decomposition into strain and rotation, and the deviatoric tensor relation
jnvolves the strain and strain-rate tensors, independent of the rotation
tensor. However, inclusion of quadratic terms to measure the shear variationm,
and for consistency, the dilation required for a compressibility relation or
incompressibility approximation, involves the square of the rotation. This
will lead to unfamiliar equations more complicated than conventional systems
in which rotation is absent. An alternative strain definition is introduced
with corresponding invariants to yield a system independent of the rotation.
Within the linear approximation of the deformation geometry, both strain
measures are equivalent, but model coefficient dependence on squares of the
strain implies different response with the different measures. It is unlikely
that small strain data could distinguish the two models, and the simpler form
is adopted for application.

The constitutive equations for both plane stress and plane strain
are derived with a view to investigating a series of two-dimensional contact
problems; for example, indentation of an ice-plate by a rigid structure and
movement of a rigid inclusion frozen into a plate (neglecting variations with
depth), and contact with an inclined vertical structure (neglecting horizontal
variation). For the very slow motion envisaged we have the conventional
linear equilibrium equation (and linear strain-compatibility if required), and
linearized boundary conditions, but nonlinear differential viscoelastic
constitutive relations. Formulation in terms of dimensionless variables with
normalized stress and strain measures, taking into account the small elastic
strains (strain jumps when stress applied instantaneously) compared to the
creep strains of order one percent, introduces a dimensionless parameter‘which
will typically take values in the range .01>,1. The presence of a small
parameter in one or more coefficients indicates that care must be taken with
numerical schemes, but its influence is explicitly shown in the normalized
system. ’

An implicit finite difference scheme for the time variation is
introduced, in conjunction with an iteration procedure at each time step to
approximate the significant nonuniformity of the differential relation

coefficients. It is shown that at each step of the jteration, current strain
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components can be related linearly to current "pseudo stress" components
involving. the current stresses and "residuals" constructed from previous
stress and strain values. That is, there are strain-pseudo stress relations
equivalent to linear elastic strain-stress relations, but with nonhomogeneous
coefficients. Furthermore, the pseudo stresses satisfy the standard linear
equilibrium equations with a nonhomogeneous body force determined from
gradients of the residual stresses. The iteration and time step march there-
fore becomes a sequence of linear elastic equilibrium problems, each one for a
material with (different) nonhomogeneous moduli and under nonhomogeneous body
force. Boundary conditions of traction will involve the residual stresses.
Thus, if the two-~dimensional elliptic spatial problem for general (smooth)
nonhomogeneous properties and body force can be solved accurately and quickly
by finite element or finite difference methods, it is expected that the
implicit time marching and iteration scheme will yield stable viscoelastic

solutions.

VISCOELASTIC SOLID MODEL
Let o denote the Cauchy stress tensor and S the deviatoric stress
defined by '

S=g¢ —-% (trg) lors,. =g, - % o (I-1)

ij ij kksij ’

where the components refer to rectangular Cartesian axes Ox; (i =1,2,3). 1f
v(x,t) is the spatial velocity field, where t denotes time, then the spatial

velocity gradient has a symmetric-skew decomposition

avi 1 Bvi av. 1 avi av.
ax. 2 \3x. ax.) T2 \3 T 5o (1-2)
J J 1 J 1 : »
or L. =D.. +W.. |, (1-3)

where D is the rate of strain and W is the rate of rotation relative to the
current configuration: 0, S, arid D are frame indifferent tensors, and a

frame indifferent deviatoric stress-rate is given by
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sM=g+ s+ + @-Ws (1-4)

where a superposed < denotes material time derivative. If X denotes particle
position in the reference configuration, then the deformation gradient

tensor F is defined by

X,

= -
Fij axj ’ (I-5)

and the frame indifferent left Cauchy-Green tensor is given by

B=FF . (1-6)

It has been shown that a differential viscoelastic relation adequate
to describe the known qualitative nonmonotonic strain-rate response at con-<
stant uniaxial stress and nonmonotonic stress response at constant strain-rate
must contain stress and stress-rate and strain and strain-rate at least. The
tensor (or directional) structure cannot be determined by uniaxial data, nor
can the dependence of the response coefficients on the stress and deformétion'
invariants (assuming isotropy in the reference configuration), or on rate
invariants. We therefore adopt for the present a reduced form of the shear
relation (6.12) in TR, presented in the alternative normalization leading to

the uniaxial relation (5.5) in TR:
s L(ersPy1rus=0 [g - 3 (tr D) ;] +w [g - 1 (er 8) ;] . (1-7)

The incompressibility assumption of TR is not made, so tr D # O, and depen-
dence on the tensor 92 is eliminated to obtain elastic jump relations as a
smooth limit (see TR, page 42). Eliminating possible dependence on the

tensor §2 has no similar justification, but could not be distinguished by
uniaxial data. The response coefficients ¥, ¢, and w can depend on stress and
deformation invariants, and on their rates, but for determination by uniaxial
response only one stress and one deformation invariant can be included. We
assume these should be measures of shear, so choose the deviatoric stress

invariant

J= % (tr §2) , (1-8)
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but consider both principal deformation invariants

= =1 {2 _ 2 -
K, = trB, K, 3 (Kl trB ) s (1-9)
to investigate the small deformation approximation and choose an appropriate

measure. The third principal invariant
2
K3 = det B = (p_/p) : (1-10)

measures the dilatation through the density change Py > P
The introduction of elastic compressxblllty

Y2 oy, (1-11)

-p= % tr 0 = k [K
when k is a constant bulk modulus, anticipating the small elastic strain
assumption, will modify the details of the correlation of uniaxial stress data
with the response coefficients ¥, ¢, w, described in TR (this set is denoted
by ¥*,¢*, w*). That correlation still determines magnitudes of the coeffi-
cients useful for our later normalization. The jump or elastic relation TR
(4.21) with the correlation TR (5.15) shows that $ =0 (Go) where G, is an
elastic shear modulus, so that if , is a stress magnitude, then eoo/Go) << 1
is an elastic strain. We suppose also that k = O (G,), and is known. It has
been shown that each of the terms of (I-7) is necessary for the uniaxial
stress response at constant stress and constant strain-rate. If e is the
axial strain, and the strain and strain-rate terms make similar contributions
at constant stress o = O,» then TR (5.5) implies Vo _ = [Goé) =0 (we). It
is conjectured that the strain at minimum stra1n-rate, e, say, is of order one
percent, roughly independent of ao, so that € = ool(G e, ) << 1., 1If t, is the
time to minimum strain-rate, then e ~ e, /t and so Y = O (I/et ) and

=0 (G /t ). Similarly, if ty is the tlme to peak stress o at contrast
straln-tate, where the strain is also conjectured to be e,» TR (5.5) implies
v =0 (l/et ) and w = 0 (G /t ) thus tp = 0 (ty). Here e, ty» and ty depend
on the stress level g As 9, increases, the times t, and ty decrease,
but ¢ increases, and et = %%tm will likely decrease due to the significant

nonlinear dependency of t, on . Thus a maximum magnitude of ¥ should be
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attained when 9, denotes a maximum stress level in the application, and
similarly for w.
_Hence, choose o, to be a maximum stress level and define dimension—

less coefficients by
k=GK, ¢ =0C2, p = ?/(etm), w = con/cm, (1-12)
where
€ = cO/(Goeo) << 1, (1-13)

and K, 9, ¥, 2, have magnitude of order unity or less. The natural time scale
of the viscoelastic response is th (associated with the maximum stress

level oo), so a dimensionless time T defined by
t=¢T : (I-14)

is ofder unity when significant viscoelastic creep or relaxation has occurred.
Complete determination of ¥, ¢, w, by uniaxial stress response
requires dependence of ¢ and w on one strain invariant, dependence of  on one
strain and one stress invariant, and the response to full unloading from each
stress level o, provided that the response is compatible with this reduced
model. For the subsequent analysis and numerical scheme we suppose that
v, ¢, and w depend on one shear invariant of stress and one shear invariant of
strain, but dependence on further stress and strain invariants can easily be
included. Dependence on rate invariants will affect the numerical scheme

required for the time steps.
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SMALL DEFORMATION APPROXIMATION

Let u (X, t) denote displacement, then

x=X+u, v=3u/dt, (1-15)
and
aui 1 aui du. 1 aui du.
ST ST RS Aol of R A b ol o (1-16)
3 J 1 J :
orF=1l+e+uw , (1-17)

is an exact additive decomposition. Small deformation implies

du,

3% << 1= lel << 1 and ol << 1 (1-18)
j

when e and w measure strain (stretching and shear) and rotation respectively

from the reference configuration. Let e,(<<1) denote a magnitude of e or w,
then '

u (%t) =u(x ) +0 (e |x-x]|) , (1-19)

where u (go,t) represents a rigid body displacement which can be eliminated by

choice of coordinate origin. If the maximum body span.is L, then
|x/L - X/L] = |u/L]s 0(e ) << 1 , (1-20)
so that on the length scale L:
x=X. (1-21)

That is, we identify reference and current-particle positions for application

of field equations and boundary conditions, making the approximations

3 . 3 -
Ix. T X, (1-22)
J t J

t
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so that from (I-2), (I-3),
D=¢, W=uw , (1-23)
and the equilibrium equations in the absence of body force become
30, .
2l =9 . , (24)
SXj

For a long aSpéct ratio body with width & << L, the approximation (I-21) is
required on the length scale & which implies a muﬁh stronger restriction on u
than (I-20). Small strain with finite rotation may be necessary for such
bodies; for example, bending of thin plates. Now Hé" = O[H§M/tm],

Ispil = 0[H§ﬂe°/tm), Iswi = O(HSHeO/tm], and hence the linear approximation of
(1-4) is

§(1)= §, tr§ =0 . . (1-25)

To exhibit a shear influence in the invariants (I-9) of (B), it is

necessary to retain the quadratic terms in the expansion (I-6):
- 2 2
B=1l+2e+e-eutrue-u (1-26)

where to second order in e,

K, = 3+ 2¢tre+ trg2 - trg2 ’ (1-27)
= 2 2
K, =3+ 4 tre + 2 (trg) -2 tru” , (1-28)
K31/2= det F =1 + tre + -;- (trg)z - % trg.z - -;— trgz . (1-29)

To first order in e, the dilatation is measured by tre, and both K; and K
depend only on tre. Retaining second order terms necessarily involves trw

in Ky, Ky and Kj. A pure shear measure is obtained through the tensor
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=B -4
B=B-3Kl
= 2(9 - 3 tre .1.) * (92 -3 trszl) '(92 ] "“’21) Toew t+owe,
(1-30)
which vanishes in pure dilatation. Since §3 is O(eg), the only second order

shear measure is the quadratic approximation

§2= 4 [ez- % tre e + = (trg)zl] (1-31)
with invariant
’ (1-32)

which is independent of w. However, an incompressibility approximation Ky =1
to second order would involve trw .

Alternatively, we can define a first order strain measure by

e=3B-1 , (1-33)

g

which is equivalent to the definitions (I-16) to first order. Now

K1 =3+ 2tre, § = 2 <§ - % tre l) ’ (1-34)
and §2 and K are given exactly by (I-31) and (I-32), while to second order
K31/2= 1 + tre + % (trg)z - % trgz s (1-35)

so g, K, and K3 are independent of w. Recall that p/k =0 [oo/Go) =0 (eeo)
and 52 < 0.01 is expected, so that 525 e, Hence (I-11) and (I-35) imply that
tre = 0 (eeo) and (trg)z < eg y S0 to O (eg),

1/2
3

2

R = trgz, K =1+ tre - %»trg . (1-36)
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The arguments of ¥, ¢, and w will be J, defined by (I-8), and K, defined by
(I-30) which is as simple as the approximation (I-36);; both require

that trgg is calculated in addition to the strain temsor e. If
incompressibility is prescribed, so k + =, then tre = % ttgz to second
order. The quadratic expansion (I-36)2 is retained initially to examine the
compressibility contributions in comparison with the shear terms, so (11)

becomes
-p = k (tre - % trgz] ’ (1-37)
while the deviatoric relation (I-7) to first order in e, is
é*ﬁl*W[g*p}]=¢[é-%trél]+2m[g*%trg£] . (1-38)

To complete the normalization (1-12)-(I-14), define dimensionless

stress and strain by

g=0L, p*= o P, &= eE . (1-39)
Now (I-37) and (I-38) become
(tr§ e, 9 '
-P=K—€—‘§-Etr§ * (1-40)
d d 1
S;ﬁ(é"l’l)”’(§+Pl)=°;ﬁ(§‘§“§l>
+ 2:2'(‘5‘ -%trg }) . (1-41)

Since trE = O(e) and tr§2= 0(1), the terms in (I-40) are respectively order
unity and order eole. Thus, eliminating P in (I-41) gives terms of order

€ and order e, from gdP/dT, but terms of order unity and eole from ¥P, and
with eo/s.s 1 the term tr§2 must be retained. Alternatively, leaving P as

= 1/3 tr I, the same magnitude as I, and eliminating trE in (I-41) by

%o 2 1
tr§=—-§—+i—tr§, P=°'3'tr§ ’ ' (1-42)
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allows eotr§2 to be neglected in comparison with E, and the first order visco-

elastic constitutive relation becomes

dz dE
~ & \ dP 2eQ - ~ _
cwte (R Fievrer-Racogem . g

The term 2¢Q/3K is retained in comparison with ¥ since & > e, arises. In the

normalized variables the elastic jump relations give

(E] ~ e[2] . (1-44)

PLANE STRESS AND PLANE STRAIN

First consider plane stress in which

)X =1z = I

32 E,..=E ., =0 . (1-45)

33 227 732 31

Let the superposed - denote differentiation with respect to T, and define

%% , a=y+ 28 4 (1-46)

o =1+ 3K

Now (I-43) gives a relation for E;3, not required in the plane field equation,
together with three independent relations for E;y5 Ej;5 and Eyy, most

conveniently expressed as

OB g% 20E)) = eI, + ¥I,, (1-47)
@ (B - Ep) + 20 (B - E)) = (£, - £,,) + ¥ (g, - L, (1-48)
o o _ }. . . l )

) (Ell + EZZ)«+ 29 (Ell + E22) =30 (211 +1,,)+ s (zll+ 222) . (I-49)

The corresponding isotropic elastic relations are

Eya =36 %120 Bpp - By =355 (55 - £,,),
(I-50)
_ e(K+4/36)
Ely * By = —gxg — (E* Ip,)
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when the elastic shear modulus is u = GoG’ which follow from (I-47)-(I-49) if
Q=¥ =0 and ¢ = 2G.
~ In plane strain,

E,,=E,,=E,, =0, I =1z =0, tr E=E,, +E (1-51)

33 32 31 32 31 ~ 11 22’

and while 233 does not enter the plane field equations, it must be eliminated
from trl by applying the constraint Eg3 = 0. This is most simply achieved by
replacing P in (I-42) by —Ktrgle, since only the first term in (I-40) was
included in the derivation of (I-43) from (I-41). Hence (I-47) and (I-48)

still apply, and (I-49) is replaced by

. . 2y _ . . i
8 (E11+ E22) + 2 (Ell + EZZ) € (zll+ 222] + ¥ [zll+ 222) , (I-52)

where
= 1 _ 1 '
B=2k+30, y=KY¥+3ed . (1-53)
Recall that Ell + E22 = trE = 0(e), so the L.H.S. of (I-52) is order unity; in

the plane stress relation (I-48), E;; + Egy is order unity. The corresponding

elastic relation is

- e -
B, * By = aris e Ot Zyy) (1-54)

In both plane stress and plane strain, equilibrium in the absence of

body force implies

8211 . 3212 -0 8212 . 3222 - (1-55)
" = Uy ry e ’ -
8X1 8X2 3Xl BXZ

and strain compatibility with a continuous displacement field requires

2 2 2

3E;; 3 Ey 3E),

+ = 2 ’ (1-56)
2 2 3%, 0%
) 2%, 1%%;

aX

which are identical to the corresponding equations for linear elasticity.
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It remains to construct the invariants J and R in normalized
variables for both plane stress and plane strain. Common expressions for the

stress and strain are

I I 0 E;1 By 0
t={ 1, I, o} » E=| E, E,, o} » (1-57)
0 0 trr-z -z, 0 0 rE-E-E,

where in plane stress trl = 211 + 222 and in.plane strain trE = E . + E

11 22.
Hence
T 1 1 2
J—Etr(z gttg‘];)
-2 2 2 _ 1 2 _
=Lyt Iy tIyy t Ik, - trl (211* 222) + 3 (erz)®, (1-58)
1 1 2
I = 3 tr <§ 3 trE l)
_ 2 2 2 _ 1 2 -
=Ejp *+E)) *E, +EE, - trE (Ell + 522) +3 (erE)” , (1-59)

where I is a normalization of % K given by the full expression (I-32) The
dimensionless coefficients @, ¥, @, will be given as functions of J and I.
By (I-40) '
trE = e trEZ + & trr (1-60)
~ o ~ 3k "~ °?
so (trE)= o(e), (tr§)2 = O(ez) < e  as noted earlier.

Thus, in plane stress, the lead order approximations are

S 2. 1,2 2
J=rp+ 3 (5] 8-, 5,,) , (1-61)
c_ 2. 2. 2 e )
1 =Ejp *Eyp * Byy * BEyEyy = 3x (51 + 5,)(Ey; + Ey) ,  (1-62)
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where the order £ term has been retained in I. In plane strain,

~ g2+l (e2,52- )
. I=E5*3 (Ell * Eyp E11E22> ’ (1-63)
and J is given by (I-58) with
erz = X [E,, + E _ e £ 2+ 82+ 2 2)] (1-64)
~ £ 11 22 2 11 22 ~12 *

IMPLICIT FINITE DIFFERENCE SCHEME FOR TIME STEPS

Time derivatives occur only in the constitutive relations (I-47),
(1-48), and (I-49) or (I-52), and not in the equilibrium nor compatibility
equations (I-55) and (I-56). An implicit point difference scheme for the time
steps is generally more stable than an explicit scheme, and schemes with
general weighting between time T, and time T,4q (r = 1,2,3,...) are presented
for the plane stress system (I-47) (1~-49), and the plane strain system (1-47),
(1-48), (1-52). Let a subscript r denote quantities evaluated at time T, and

use the notation
W o=w(J, 1) (1-65)

for all nonconstant coefficients, where Jr’ Ir denote the stress and strain
invariants evaluated at time T_. Define

W= (1 - 1) W+ AW 0<2arc<l, (I-66)

r+l’
as a weighted average of W between time T, and time T,4q-

An explicit scheme is given by A = O, when coefficients and spatial
derivatives are all evaluated at time T., but are commonly unstable unless the
time increments are extremely small compared to spatial increments.

Let § be the time increment T,.,; - T,. Different increments & may
be chosen at different times T_, which could be advantageous for the different
time scales of variation which can arise. Using a forward time difference and
'a weighted average defined by (I-66), the relations (I-47) to (I-49) are
approximated by ’

3 1(Eyp)pnr = (Epp), ] + 268, (B5), = el ()™ (215),] + 8%, (Fpp),, (1-67)
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. [(Ey; - Epp) yy - (Byy - By, ] + 268, (B - Eyo)er

=[Gy =250 - (0 -5, ] + 68 (T - I,), » (1-68)

o [(E)) v B, - (Ejy *+ Byp) ]+ 288 (B + Eyale

=1 - 1 -
=30, [(z) + 5., (2, + 25,00 + 3 sa (T, +5,,), »  (1-69)

and the plane strain relation (I-52) is approximated by

26y
- r
B [(E); + E)p) 0ym (Byy + Bl ) + —= (B[ + Eyn),

=e [(z;y +25,) 4 - (z,; + zzz)r] +ov (I,7+1,,) . (1-70)

Now a weighted average of W involves both W, and W_,;. The scheme starts with
known initial conditions - all variables W, - and proceeds in steps, calcula-
ting each W.41 given that each W, has been determined in the previous step.

It is therefore necessary to iterate within each step by taking

=(0) _ =(n+l) _ _ (n) _ -

Wr - wr, Wt - (1 A) wr + lwr-l-l’ n= 0,192.0. (I 71)
for all the coefficients ﬁr in (I-67)-(I-70), but not for the stress and
strain components. Using (I-71) for coefficients, so they are prescribed at
the start of each iteration, means that (1-67), (1-68), (1-69), and (I-70) are
three linear relations connecting (Ell)r+l’ (E22)r+1’ (Ey9),41» and (211)

r+l?
(222)r+1’ (212)r+1’ wh1ch involve the known (Eij)r and (Zij)r' The iteration
in continued until some solution norm or parameter measuring a significant
feature changes by less than a specified tolerance.

The deviatoric relations (I-67) and (I-68) have a common form

(Elz)r'l-l = jr[(zlz)rq.l + Ar(EIZ)r = Er(ZIZ)r] ’ (1-72)

(Eyy = Epplpey = 3,002, - Z29)re1
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where
e + SAY ? - 28(1-))a e - §(1-A)Y
- r - r r - r
J == — 3 A= — ’ B — ’
T 3+ 28\ ¥ e + 8AY T ¢+ &Y
r r r r

The relations (I-69) and (I-70) have the form

(Eyp * Bpplper = X [(21 * Zpp)par * C_(Ey, + Epp)y - D (2 + Zyp)e)s

where for plane stress (I-69),

% (¢@_+ 8Aa_) 33 - 26(1 -A)a_] e0_- §(1-1)a
- r r - _ r T = T T
Xr = - - ’ Cr = — — ] Dr = - — )
® + 28)AQ €@ + Sia €0 + Sla
r r r r r b o
and for plane strain (I-70),
e + Y 8 -[26(1-2)7_]/e e = 8(1-2)Y¥
§= L3 ,E'-"'t r ’-D.= ro
T B« (26%; /e T € + SAY T g + GAV
r r r r
Define
s_ = C,(Ey; *+ Epp), = D (2 * Zyg)e s
Q, = A.(E); - Byp)y - B[ Zy9)p 3

-

(Rlz)r = Kr(EIZ)r - Br(ZIZ)r ’

~

(2;5)rn1 =_(zij)r+1 + (Ryy)p 1030 = 125

where Rij and Zi. are conveniently termed residual and pseudo stresses

respectively. Now (I-72), (1-73), and (I-75) can be simply written

(1-74)

(1-75)

(1-76)

(1-77)

(1-78)

(1-78)

(1-79)

(1-79)

(1-80)
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-~ -~

(By5) 01" 3r(£12)r+1’ (B11m Eap)par= T(210 290) i
(E11* Epplpay = X (2 222)r+1’ (1-81)
and hence we have explicit strain-pseudo stress relations
By )enr =7 Gt X )G10)ar - 3 G- 3)(p,) 0y (1-82)
(Byp)par = % (3+ ;r)(EZZ)t+1 - % (3, - irJ(Ell)r+l’ (1-83)
(E1o)eer = (5 10) (1-84)

at time t.,;. The compatibility equation (I-56) holds at each time T,y and
the equilibrium equation (I-55) can be expressed in terms of the pseudo

stresses at each tlme.Tr+l as

A

3(z;) a(z,,) 2(2;,) 2(2,,)
11/r+l 12°r+l . 127r+1 22°r+l _ -
axl * BXZ * 1— O’ ’ axl * 8X2 * b2- 0 ’ (I 85)

where the pseudo body force components b; and b, are defined by

S 2(Ry,), ARy, o alryy), ARy,
= ’ 5
1 T, 2 3%, X,

(1-86)

given by the solution at time T, and values at the preceding iteration.

The system (I-82)-(I-85) with (I-56) is simply a plane linear
isotropic elastic system with nonhomogeneous body force (b;, by), and non-
homogeneous modull, since J £’ x ’ (le)r, at each iteration within the time
step T + T r+l depend on the nonunlform stress and strain fields just
determ1ned. Traction boundary conditions can be expressed in terms of the
pseudo stresses. A complete spatial problem must be solved at each
iteration. Note that if stress jumps are applied initially, the initial
solution correspbnding to r = 0 is the solution at T = O+ determined by the
elastic jump relations. The choice of & at each step depends on variations

occurring on the T scale; that is, on the real time scale the
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FEATURES OF THE TIME VARIATION

The typical response is described by the shear relations (I-47) and

(I1-48) which, deleting the component subscripts, have the form
OF + 20E = eI + YI, (1-87)

where the time unit is t_and ¢ is a small parameter. If I(T) is prescribed,
with order unity variation on the t  scale, then (I-87) determines a response
E(T) with E(T) order unity (assuming that the coefficients ¢, &, and ¥ are
smooth). However, if E(T) is prescribed with strain-rate E(T) order unity,
for example, E(T) = r = constant, E = rT, then the time interval on which

¢2(T) enters the balance requires £ = 0 (1/e); that is, I varies on the time

scale et . This is precisely the observed constant strain-rate response in

which initially ofe G, or £/E = 1/e. For illustration, consider the linear

viscoelastic case & = 2Q = ¥ = 1 where (1-87) defines a standard linear

solid. Then, for
(T) = H(T), E(O+) = ¢ ;' (1-88)
there is a smooth bounded response on the time scale tp:
T>0: E(T) =1- (l-e)e™ Y, B(T) = (1-e)e T . (1-89)
Alternatively, for
E(T) = H(T), - z(0+) =0, (1-90)

the stress response is

T>0: I(T) =T+ (1-e)(1 - e—Tle]

1] (1”91)
which exhibits rapid variation over an initial time period T = ¢ (t = etm).
We can assess the finite difference approximation (1-72), (1-74)

applied to this linear viscoelastic solid. Here

= _ g+ 8 3 o= 1i- §(1-1) 3 = &£C §(1-2)

r 1+ 8\x°7 r e + & r e + 8\ ’ (1-92)
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which are constant at each time step unless § is changed, and no iteration

within the time step is required. Now (I-72) becomes

' ' 8 _e + 8 8
Ere1 ~ (1 T T+ sx»gr T 1+ ax [zﬂ-l - (1 T+ 5A) Zr] - (1-93)
When £ =1in T > O,

Er+1 - E

r _ 1 - - _ _
5 ST+ (1-E)=o0), (1-94)
so E(T) = 0(1) until E. » 1 as shown by (I-89), and § is chosen to make the
approximation (I-94) adequate. Alternatively, when E=T in T 2 o, Er = r§,
so

- I 1 +8) +r8 -3
T r

S = e + 38X ’ (1-95)

zt+1

which is order (1l/e) for E < 1 until I.+ 1+ ré§, assuming § < €, confirmed by
(I-91). An adequate approximation will therefore require § << ¢ until
e‘le-T/E = 0(1). During computation of a nonlinear problem it would seem
necessary to start with § << ¢, unless boundary conditions clearly impose an
order unity g, and allow increasing §, subject to 12 41 - Erﬂ/é = 0(1) as time
proceeds. Contact problems will include some strain variation prescription,
which for some velocity ranges will imply a rapid stress rise on the time
scale T = ¢, at least initially.

Recall that the magnitude of ¢ depends on the elastic strain
associated with the maximum stress reached compared to a strain magnitude at
peak stress, and may therefore not be too small for high strain-rate, large
peak stress, applications. Effects of significant nonlinearity could also
modify estimates made with the above linear model, and experience with the
nonlinear computation is required to choose an optimum strategy for the finite

difference scheme.

BOUNDARY-VALUE PROBLEMS

Let X;, X, be dimensionless coordinates with a length unit % repre-

senting the stress variation length scale in the application; for example, a
plate thickness, or width, or maximum contact span. Define dimensionless

displacement U and velocity V by
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u=et U, VY=0-=
° (1-96)

1 3U 3Uu.
so E;. =3 = ) ¢
J 1

Figure 1 shows vertical sections or horizontal plans, respectively,
for some idealized plane strain or plane stress contact-problems, in which
straining in the horizontal plane or vertical plane respectively is neglected.
In each case an ice plate of uniform (dimensionless) thickness or width 2,
with stress free horizontal surfaces or lateral edges and rear edge, impacts
with a wall with initial (dimensionless) velocity V, in the negative X,
direction, then decelerates as the contact force increases. Relative to non=
Newtonian axes fixed with respect to the midpoint of the rear edge, the

equilibrium equations are

2
:;11 . zilz . el zo ¥=o0, ;;l% + ;;EZ =0 , (1-97)
1 2 oty 1 2

where p is the ice density, and the wall moves with velocity V(T) into the ice
plate. The dimensionless contact force per unit horizontal or vertical span
(force/com) is

2 2

208" Le_ 2p8"L |
F=-—s—V == 5 Vs (1-98)
ot eG t
om om
7 t% dv
so the body force in (I-97); is -F/2L. - Note that V = o1 at will be order

unity or less if £ ~ 10m, tm < 2s, e, 0.01, when |dv/dt|< 0.02ms 2, which

are common conditions, and the dimensionless body force (02/0 ) dv/dt ~ 10 -4

for o = 20 x 105 N-z, |dv/dt| = 0.02 ms 2, and decreases as 0 increases and
|dv/dt| decreases. Commonly this body force will be negligible in comparison
with stress grad1ents in the contact area, which may be a useful simplifica-
tion since V(T) is part of the solution.

Figure la shows contact with a wall parallel to the front edge. Let
the friction coefficient be u (constant). The stress free boundary conditions

are
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X2
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V(T)

RIGID,%A

(c)

Fig. 1 - Plane strain or stress contact configurations.
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= + s = = 03
X, =%1, 035X <L I, =0, I, =03
(1-99)
X1 = L, -1 < X2 < 1: 212 = 0, le = Q.
The contact conditions are
Xl =0, -12=% X2 < 1: 212 = —uzllsgn X2,
' (1-100)
T
Ul('l') =f v(T')4T"',
(o)

@

so Up-is independent of X,, but its variation with T is part of the solution.
Since the rear edge X; = L is stationary by choice of axes, there is an
auxiliary condition ‘
, | .

ul(L,o',T) =0 or Ul(0,0,T)' = —_f Enl dX,, (1-101)

‘ ' o x2=0

which is used in place of (100)2. Values of Ejjp, throughAzll, I,y at time-
T ., can be prescribed by the iteration process (I-71), and in turn the body
force is given by ﬁl’ (0,0,T), using, say, a quadratic fitted at three
previous times.

Figure lb shows an increasing contact zone as the ice pushes into an
inclined wall at angle 8 to the front edge, but the small strain and small
rotation approximation can only apply through to complete contact if 8 << 1.
If the ice plate has already taken up the configuration shown in Figure lc,
and starts moving from rest, then the small deformation approximation is valid
for arbitrary 8. Further, if the ice is at rest in the partial contact shown
in Figure 1b, then the small deformation theory can be applied for initial
movement in which the contact zone changes by order of the small strain. A
friction condition on the inclined wall depends on the direction of relative
motion. For & = O, Figure la, the ice slides away from the symmetry line due
to the lateral expansion (supposed) because of the stress free lateral
surfaces, so the tangential friction changes direction at the symmetry line
(I-100). This, of course, introduces a stress discontinuity, unfortunate for

numerical calculation - a continuous velocity dependent friction condition
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would be more satisfactory for numerical calculation. For example, (100)

could be replaced by

L =0: ¢

1 12 = -uxlluz, (1-102)

where the friction depends linearly on both normal pressure and sliding
velocity, and is continuously zero at the symmetry line. The corresponding
condition aéplied on the inclined wall avoids the difficulty associated with
not knowing a priori at which point the slip changes direction as © increases
from zero. Beyond some value of 6 we would expect the friction to act in the
negative Xz-direction over the entire contact zone, not just in a zone
adjacent to X, = 1. The additional contact condition is

-

ﬁl cos 6 + U, sin 6 =V cos 8 , (I-103)

and the noncontact surfaces are again stress free.

Further plane stress problems describing idealized horizontal
deformation configurations are shown in Figures 2, 3, and 4. Figure 2 shows
an ice plate pushing against a rigid structure of arbitrary profile of
smoothly varying large radius of curvature; that is, |g'(xX )I << 1. The
coordinates are fixed relative to the midpoint of the rear edge so equilibrium
is given by (I-97) and conditions (I-101) apply. Stress free boundary

conditions are

X, =%tH, 0x X, s L 21, = I, =0, (I-104)
xl =L, ~-H < x2 < H: 21y = 2,0, (1-105)
X, =0, |x2| 2 W (T): L), =%,,=0, (1-106)

while the contact conditions, to first order, are

X, =0, |x2| < W(T): U, = d(T) - g(XZ), b (1-107)

1 1 12 = 7RI,

if the continuous velocity dependent friction condition is used, where d(T) is

the indentation depth (dimensionless) relative to the rear edge; that is,
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X4

e

-y STRESS FREE

Fig. 2 - Plane stress configuration for smooth indentation.
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d(T) = V(T). The length unit ¢ is a semi-span magnitude at maximum contact,
so W(T) < 1, but W(T) is part of the solution, as well as d(T) or equivalently
F(T). As in the elastic formulation, d(T) can be eliminated from the boundary
conditions by replacing (I~107) by a stress-type condition

au

1
X =0, [x,|sW(T): 53; =-g'(x,) , (1-108)

but here F(T) remains in the body force. The semi-span W(T) is governed by
smooth separation at the end point, normal and shear stress continuously zero
and

82U

2
2

As in the previous problem, (I-101), with iteration determines

1

X, =0, X, =2 WT): + g" (xz)é 0. (1-109)

aX

d(T_,;) and F(Tr+1) if W(Tr+1) is prescribed. An initial estimate for w(Tr+l)
can be made by extrapolating from previous time steps, with some alternative
starting procedure at T = 0. Since the numerical solution satisfies equili-
brium and continuous stress gradients (second derivatives of displacement)
within the approximation limits, an incorrect W(Tr+l) must be revealed by
failure of the separation condition adjacent to the contact zone. If the
W(T_.,,) estimate is too large, it is plausible that the correspondingly
"reduced contact pressures" for the given deceleration will lead to "reduced
displacement” outside the contact zone, and hence overlap. If the W(T_,q)
estimate is too small, since the contact pressure is zero at the edge we can
conjecture that the increased contact pressures necessary to balance the given
deceleration lead to a larger negative gradient near the edge, and so again to
smaller stress and displacements just outside the contact zone, and hence
overlap. Thus, while (I-109) will be too sensitive for numerical testlng, a

criterion for judging the w(Tr+1) estimate is
v, (o, x,, T )+ g(x,) - d(T_,,) >0  for 1%, > w(rr+1) , (I-110)

applied in some small region adjacent to the contact zone.

In each of the above problems, the rear edge Xl = L could also be
subjected to a driving stress le(L, X,, T) = =P (XZ’T) in place of (I -99), or
(1-105),.
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Figure 3 represents a static ice plate in which a rigid structure is
frozen, and then the ice plate is set in motion, for example by water currents
which impose a velocity V(f) in the X; direction through basal shear traction.
In genefalized plane stress we can identify this with a body force, precisely
that shown in (1-97)1, so with respect to Newtonian axes fixed on the struc-
ture there is equilibrium governed by (I-97). Here we regard V(T) as
prescribed.

Consider the circular disc shown in Figure 3 with unit dimensionless
radius, and let the distant plate boundary be circular with radius L for
convenience. In plane polar coordinates (r,8), the physical components of
displacement, strain, and stress, satisfy the strain-displacement and

equilibrium equations

E = EEE g =41 EEQ + EE E =41 1.325 + EEQ - Eﬂ « (I-111)
rr ar ’ 88 r 30 r’ ro 2 \r 36 ar ’
ok aZ r =-1I plze
T 1 ro + LT L] + o 7 cos 8 = 0,
ar r 2386 r 2
ot
o'm
3z az z pzze (1-112)
1_80,_x8,,.23._ ¥ sin 8 = 03
r a6 ar r 2 ’
g t
om

and stress-strain relations are unchanged apart from the subscript translation
1+r, 2+ 6, For numerical purposes it may be more convenient to keep a
rectangular plate and use rectangular coordinates. Boundary conditions are a
stress free plate boundary and prescribed displacements on the disc boundary
given by ‘

r=1: U.= -v, ﬁ2= 0, or Ur= - V cos 6, ﬁe= V sin 8. (1-113)

Finally, consider an ice plate region in uniform stress

I =N Iy Ny Iy, = S, (1-114)

into which an elastic inclusion shown as a circular disc in Figure 4, is

carefully embedded and the ice refrozen onto its edge without disturbing the
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V(T)

Fig. 3 - Rigid inclusion frozen into plate which is set in motion.
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Fig. 4 - Elastic inclusion frozen into stressed plate.
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far field (L >> 1). The local stress field is changed, and the elastic disc
is stressed and deformed. It is supposed that N; + N, < 0 so that the disc is
under compression when frozen in at time T = 0. If the elastic properties are
given and Nis Np, S are prescribed, the coupled plate-disc problem with
continuous traction and displacement (bonded interface) is well posed, and the
tractions and displacements at the interface can be calculated. Suppose that

the common interface displacements can be measured in the disc:
u, (1,0,T) = Ur(e,r), U, (1,0,T) = Ue(e,T). (1-115)

Then the elastic disc solution can be determined, giving the tractions on the
interface. In turn, coupled with the plate edge tractions Ny, Ny, S, these
determine the viscoelastic plate solution, and in particular
Ut(l,B,T), Ue(l,e,T). If Ny, Ny, S are the correct field values, these
interface displacements would match (I-115). Since the problem of prescribed
displacements and tractions on r = 1 is not a well posed viscoelastic problem,
N;, Ny, S cannot be determined directly. A sequence of trial N;s, Ny, S may
lead to correct interface matching, but alternatively, prescribing displace-
ment on the plate edge (say zero relative to initial stressed state) and
displacement or traction on the disc plates interface, may lead to closer
matching with interface tractions or displacements respectively.

Note that equilibrium in the non-Newtonian frame given by (1-97),

modifies the spatial equation (I-85), at time T4 to

-~ - 2 2

2(z),) 0 3(25) 0 ep = Ll=2 Pt
ax ax 1 X 2 'r
m

(1-116)

e
b4
1 2 ot 2 r$
m

and similar additions will arise from the polar coordinates equations (I-112).
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Part II

UNIAXIAL STRESS
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VISCOELASTIC AND ELASTIC MODELS

Uniaxial stress relations for the small deformation nonlinear visco-

elastic model are obtained by setting 212 = 22 = 0, Eyp =0, Eqq = Eyy = E,,
and 211 = Z» Ej; = E, in the Part I equations (I-40) and (1-45) - (1-50).
Adding (I-48) and (I-49) gives the uniaxial relation

; - (2 2, , 20 _
9E + 2QE (3 QK)EZ + <3 Y + 9K> z (11-1)
From (I-40)
ol 2 I
E+2E, -e(E°+ 2E,) = EE , (11-2)
which has the solution
=-1 24 -
E2 = 2 E + €K (11-3)

when e, is neglected in comparison with unity. The stress and strain

invariants (I-58) and (I-59) become

2.2
T=Ll,2 1. 2_3 2 ek & _
J=31% I=3 (E EZ) =ZE - & * o8k - (I1-4)
If we define a Poisson's ratio
E
=-2_1_ ez -

then since E is not constant at constant stress L, and I is not linear in time
at constant strain-rate E, then v varies with time in both these tests, even
though compression is elastic, independent of time.

Unloading from any state to zero stress gives an instantaneous
elastic strain change followed by relaxation

E=- 2%5 , = = £(E) (11-6)

since @ and ¢ are evaluated at I = 5 that is, at J o, I = Z Ez. If a model
is assumed in which the ratio /o depends only on I, independent of J, then

the unloading data function f(E) determines 9/¢ completely. Now, if
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£ = F(2,E) is the measured response at constant stress L, then by (II-1) and

the definition (II-6) of £(E),

3% z + L EE) _epy (11-7)

1f, further, the response at constant strain-rate E = w determines the modulus
E=w: £t - = y(z,E) , (11-8)

and the strain response E(I,w) allows an inversion of w = W(I,E), then (II-1)

leads to the relation

(% + %E) Y = 0(1 - %) , | (11-9)

which determines ¢. Hence (II-7) determines ¥ and @ is given by (II-6). The
normalization supposes ¢, 2, ¥ are order unity functions, and the definition
(11-8) of order unity Y takes into account the initial modulus magnitude edl.
By equation (I-48), 5-1 is precisely the initial shear modulus in the
normalized variables, equivalent to an instantaneous elastic stress jump -
strain jump ratio.

An elastic relation is obtained from (II-1) by setting @ = ¥ = 0 and

o = o(J) = @(% £2), then
- _ 2 1 s -
E= 37 * o8 el . (11-10)
Define
vy _ 2.1 ;

so (II-10) becomes a strain-stress relation

"
o

E = x(I), x(0) ’ (11-12)
where x'(0) = 0(¢) since #(0) = 0(1). A significant nonlinearity and order
unity modulus at order unity normalized stress I requires x'(1) = 0(1l), and a

simple model with these features is
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ey o 2
x'(z) = eA[l + az ] ’ (11-13)
where
A=l =01y,  a=o(cl). (1I-14)

The linear elastic case is simply a = 0.

Effects of nonmonotonic strain-rate response at constant stress,
reflected by the primary decelerating creep, secondary (stationary) creep, and
accelerating tertiary creep illustrated in TR Figures 1 and 3, can be explored
by using an appropriate linear viscoelastic relation. Solution of boundary-
value problems can then exploit linear analysis, and in particular correspon-
dence methods associated with linear elastic analyses. Of course, the
significant nonlinear dependence of minimum strain-rate and time to minimum on
the applied constant stress is lost, and similarly that of the maximum stress
and time to maximum on an applied constant strain-rate. In our normalized
variables,.the stress.unit o, is a maximum (shear) stress and the strain unit
is the relatively uniform strain e, (~ 0.01) arising at the maximum stress at
constant strain-rate, and at the minimum strain-rate at constant features.

The linear model should aim to retain these features. An isotropic linear
viscoelastic material in which compression is purely elastic has the

equivalent strain and stress formulations

T
E(T) = J_S(T) + f 3'(T-1)S(T"ar’ (11-15)
T
S(T) = 2 E(T) + f 2" (T-T")E(T' )aT' , (1I-16)
tr I = 3k°tr E, (11-17)

-~

where S and E are the stress and strain deviators

=E - % tr E 1. (11-18)

~ o~

e >

§=1I- % tr Z 1,

R

K is the elastic bulk modulus, g(T) is the relaxation function in shear and

J(T) is the creep function in shear, both g(T) and J(T) vanish in T < 0, and
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8y = g(0+), I, = J(0+). The use of.2g(T) in the relaxation form (II-16)
allows direct correspondence with a constant elastic shear modulus g.

~In uniaxial stress, (II-lS)yénd (1I-17) give

T :
BT = § <J° + 6—;—) 21+ f 3 (r-TH(Ter’ (11-19)
- |

-

which has the same form as the shear relation (II-15), but the similar
integral expression for I(T) in terms of E(T) 1nvolves a composite kernel, not
simply g(T). Recall that both g, and k, are 0(e” ), and hence J, = 0(e), but
an incompressibility approximation sets (1/ky) = 0. In the latter case, the
creep function is 3g(T). Retaining compressibility, define the creep function

in uniaxial stress by

1

z(T) = et % rm , (11-20)
o .

and let Y(T) be the corresponding relaxation function, then

T

E(T) = zoz(r) + f Z'(T-T')zZ(T')d4T’' , (11-21)
T

z(T) = YOE(T) + fY'(T-T')E(T')dT' . (11-22)

-0

. .. . . -1
are equivalent uniaxial relations, with Yo = 0(e ), Zo = 0(e).

Now the creep function Z(T) is the normalized strain response to
unit stress I in T > 0; that is, to a constant stress o which reflects the

maximum stress of concern. The corresponding strain-rate response is
£ =H(T) : E(T =2'"(D, (11-23)

which is required to have the forms shown in TR Figures 1 and 3 while strain

remains small, that is, while E < 0(1). Thus
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z'(0) = R, > 0, Z(T) < 0in0< T« T, »
2"(Ty) =0, z'(T) =R >0, 2(T,) =2z, =0(1) , (11-24)

Z'(T) >04in T > Ty Z'(T) » R,as T+ =,

where the asymptotic limit, representing unbounded strain, is included as a
convenient model extrapolatioﬁ beyond the applicable small strain range. An
alternative extrapolation is required if the application involves maintained
stress for times greatly exceeding Tpe

Similarly, by (II-22), the stress response.to unit applied strain-

rate E in T > 0 is

T
E = TH(T) : z(T) =f Y(T')dT' = Q(T) , (11-25)

o]

which reaches a maximum Q(Ty) = Qy at T =Ty and E Ey = 0(1); that is, at

strain e;. Hence the model requires
Qy = 0(1), Ty = 0(1) . (11~-26)
The required form of Z(T) is shown in TR Figure 4, implying
Y(T) >0 in 0 < T< TM R
Y(Ty) = 0, Y(T) <0inT>Ty, (11-27)
Y(T) - 0- , QT) * Q>0 as T+ =,
We also have thé inequalities
0 <R, <R, <R, 0<Qp <Qy» | (11-28)

and would like
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QG = 0(1) (11-29) ‘

to avoid a dramatic reduction of stress at constant strain-rate as the maximum
stress is passed.
The most simple creep function exhibiting the finite strain-rate as

t » @ and compatible with the derivative properties (II-24) is
L =5,
2(1) =2 [¥T + 1+ :E:_Ji 1-e H(T) (1I-30)
: i=1

where YZ, = Rg. The two exponential terms incorporate two characteristic
creep times cIl and cEl, and at least two such terms are necessary for

" — . . .

z"(T,) = 0 at finite Tp?

jyeie + jycqe = O_f (11-31)

Given Z, and R, there are four parameters iy jz; €1y €2 which, in ‘
principle, may be chosen to fit four other physical properties; for example,

Ry» R Zos and T. Thus,

R, = Z, (v + iy * JZCZ) ’ (11-32)

L P
R =2, (y + jjcqe *+ j,cpe ’ | (11-33)

| : ot L . 1( '°2Tm>]
z = Zo [YTm + 1 + 3y (1 - e ) + 3, l1-e ’ (11-34)
in conjunction with (II-31). Equations (II-31) - (II-34) are a highly
nonlinear implicit system for jj, Jzs €15 €29 which raises questions about
uniqueness and numerical stability and accuracy. In particular, magnitudes of
starting values‘for the solution may be necessary, and not obvious in view of
the small parameter € in the model. It is also necessary that the relaxation
function Y(T) determined by the creep function Z(T) has the required proper-
ties (II-25) - (II-29). An analysis of Z(T) and Y(T) simultaneously (Morland,
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unpublished work) determines the restrictions on the parameters in (II-30) and
associated parameters in Y(T), together with their magnitudes.

. Inversion of (II-21) or (II-22) to determine the Z(T), Y(T) relation
- each determines the other - is conveniently derived by Laplace transforms.
Let f(s) be the transform of £(T), where f(T) vanishes in T < 0 and
f, = £(0+), then '

L(f] = £(s) = f £(t)e 3T 4T » F(T) = s¥(s) - £, (II-35)

o
and the transform of a convolution integral is
T

- E(s)g(s) = Lf £(T-T')g(T' )dT' . (II-36)

o]

.Hence (II-21) and (II-20) give for vanishing I and E in T < 03

E(s) = sZ(s)Z(s) = Z(s)i(s) , (II-37)

I(s) = s¥(s)E(s) = ¥(s)E(s) , (1I-38)

so that the transformed material functions satisfy
Zs)¥(s) =1 or sZ(s)W(s) =1, (11-39)

which, using the results (II-35) and (I1-36), gives the Volterra integral

relations

T T
ZOY(T) + f z'(T;T')Y(T')dT’ = YOZ(T) + f Y'(T-T')Z(T')dT' = H(T) . (II-40)
(o] Q

In particular,

z.Y (II-41)

[}
—
L]
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For the creep function (II-30),

. - P (s)
“ls,y = X 3151 12%2 _ .3 _
Zoz(s) s+1+s+c1+s+cl, —'TTsPZs (11-42)

where Pz(s) and P3(s) are, respectively, quadratic and cubic polynomials with’'

s2 and s3 coefficients, respectively, unity. Hence

3 3
' . Y.
- -3 _ z 1 : : = _
SY(S) - Y(s) - YOS S_-+--b. i‘ 9 Yi l 9 (II 43)
i=1 i=1

where -b; (i = 1,2,3) are the roots of

P3(S) = 53 + 52(C1+52+Y+jlcl+j2C2) + S(C1C2+YCi+YC2+j1C1C2*j2C1C2) +YC1€2 = 0.

(I1-44)
As s + =, Z;li(s) + 1, hence Y;l?(s) + 1, which implies the condition
(I1-43),. Inverting (11-43):
3
-b.T
— 1 -
WD) = ¥ > y;e , (11-45)
i=1
and in turn
3
Y. ( ~b.T>
= _i - 1 -
NOESEDY U . (1I-46)
1=1

The required Y(T) and Q(T) properties imply that the roots —b; must have
negative real part, or preferably that the b; are real and positive. There
are no simple explicit conditions on jl' j2’ cl,'cz, which guarantee this or
the various other properties, but starting with the relaxation form (II-45)
and its properties allows more explicit statements about the parameters ¥iob;
(i = 1,2,3) and jj,c; (i = 1,2). Such results, together with an analysis of
parameter magni§udes necessary to achieve the large initial modulus in con-
junction with order unity Qy»TyrZys have been determined (Morland, unpublished
work), and allow the construction of a variety of models compatible with both
constant stress and constant strain-rate respomse. In addition, known .
parameter magnitudes will improve starting values for the numerical solution

of equations like (II-31) - (II-34) to correlate with prescribed features.
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IMPACT OF ICE PLATE WITH RIGID WALL

Consider the plane stress problem shown in Figure la, but with

perfect slip on the wall X = X) = 0; there is then a uniaxial stress solution
compatible with the momentum equations and all boundary conditions. In the
non-Newtonian axes fixed with respect to the rear edge of the plate, the

momentum equations (II-97) of Part I reduce to

plze

al o o _

®t—5 V=0, y (1I-47)
g t
om

where
v(r) = 3 (I11-48)
X=0

is the plate rear edge velocity in the negative X direction in the Newtonian
frame fixed with respect to the wall, and U(X,T) is the particle displacement

normal to the wall. Boundary conditions on the rear edge are

X=L3r=0<=>E=0,U=0, (11-49)
where
-2
E—axo

Stress and displacement are zero until the moment of impact, T = 0, so that
V(0) = 0 by (II-47), recalling that any discontinuity propagation is supposed

to be completed on a shorter time scale, thus
T=0:2=U=V=0,V=y |, (II-51)

where Vo is the uniform plate velocity before impact.

After impact, the plate compresses and decelerates until the rear
edge is at rest, then may partly or fullyArebound. It is interesting to
derive first the simple analytic linear elastic solution, which introduces
comparison values of the time and depth of full penetration, when the plate is
brought to rest, and the maximum contact pressure and strain which occur at

that time. For the linear elastic material,
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I =YE, (II-52)

where Y is the constant (normalized) Young's modulus. If the initial modulus

Y, is used, then Y = 0(8-1), if a modulus at £ = 1 is used, then Y = 0(1).

Eliminating I from (II-47) through (1I-50) and (II-52) gives

2
2 ple
3 g = - 2D , (11-53)
X Yo t
om

and integrating subject to the end conditions (II-49) shows that

pzzeo . 2
U=-—>— V(T)(L-X)" , (11-54)
2Yo t
om
and
pzzeo .
I = 3 v(T)(LX), < 0 . (1I-55)
c t
. om
Now (II-54) and (II-48) yield
plszeo . . _ :
V‘l'———-—i—'V:o ’ . (11-56)
2Yo t
om

subject to initial conditions (II-51), and hence

ve 1/2
= Ly ML o -
V=V, cos (2 5 ) , T, = 7% (ZYo ) (11-57)
e m o

where T, is the normalized penetratioh time required for the plate to come to
rest. In terms of the uniaxial wave speed in the material, the actual

penetration time is

1/2

L T 0 .

te = tmTe = —ZWE Pl where e “\pe (11-58)
e o

and !.L/ce is the wave traveltime down the plate (of length 2L). Thus t, is

approximately equal to the wave traveltime, and is independent of the impact

speed v, = e, tVo/tn.

The penetration depth is
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2e AT V 2v t v
- =0 eo __oe L o -
d, = eozu[o,re] = — = 725 (11-59)
and the stress and strain at time t, are
4T V o Yo v
_ _ e oo _ ,1/2 _al/2 "o Yo
-0, = UOZ i el 2 pcevo =2 e o °? (11-60)
o e
v .
-e =-¢eFE = 21/2 - : (11-61)
e o . Cq

where Y°o/eo is the physical uniaxial modulus. That is, the maximum strain
magnitude is given by vo/ce. Alternatively, equating the elastic strain

energy at time t, with the initial kinetic energy gives

vs AL

L ree? =1 % 2 -
—z-pLQ,vo-z eof e“dx , (11-60)

(o]
which implies
LL ¢ 2 _

2 _1 2, _ o -

(e )mean'sz e“dx 2 . (11-63)

The velocity solution (II-57) shows as expected that V becomes -V, at time
T = 2Tebwhen I and U become zero and contact is lostj that is, the plate
rebounds with velocity V.

For the nonlinear elastic material, (II-52) is replaced by (II-12).
Integrating (II-47) subject to the end .condition (II-49) again gives the
linear stress distribution (II-55), so that (II-12) implies

-gg- =E = x(2) , (1I-64)
and hence
z
U=~ — fx(z')dz' : (11-65)
where ATV(T) o]
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2
2 oL €
ot
R om
and at X =0, £ = XZQ(T)L, = ZO(T) say. Thus
w“ zo(T)
V(T) = au(o,1) _ _ V(T x(£*)dz* - £ (T)x[z (T)]
aT 2.2 o o]
AVH(T) ‘
o
i zo(T)
= _E¥%El_ | 'y (z')dzt . (11-67)
ATVE(T)
[o]
Define
I
o]
I(zo) =f 'x'(z"az' , (11-68)

0

which is determined by the elastic relation (II-12), then (II-67) becomes

1(z ) 4z
0 0 2,, _ , -
—?——Ev—+lv—0, (I1-69)
where
T=0:V=V , I = 0. (11-70)
Thus
o (z!)
I(z!
20,2 _ 42y - o ' = -
A (vo ve) =2 ~/. S dr! H[Zo) . (11-71)
[o]

where, since x(Z) is odd in I, positive inZ >0, 1 (Zo] and H(zo] are

positive and even in Zo, and
i(z ) ~ £2 H(z )~z as £ -0 (11-72)
o o’ o *

Now

-v¥)] <o, (11-73)
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» so that
A [v -v )
= -3 f “1/2 , (V,2Vvz20)  (11-74)
o W2-e) e

determines V(T) implicitly for 0 < T < TE where V(Tg) = 0, with symmetric
rebound on T, < T <

g < T, , and then I is given by (II-55) and U by (II-65).
The linear elastic solution is recovered by setting

') =1y, 1(z) =u(z,) = 22y, wle) = - ve)/? ) (11-75)
when (II-74) gives T(V = Q) =

T, as required. For the nonlinear model
(II“13)’

?

1/2 /2 .1/2 (11-75a)
@ e 1

1 2 4
H(zo) 5 eA(4Z° + azo)

B ()

a

vhere strong nonlinearity is described by A = 0(1), a=0 (e_l).
quadrature is required to
time T at V =

Numerical
complete the solution and determine the penetration
0 and the associated depth of penetration and stress.

For the linear viscoelastic material with uniaxial relation (11-21)
or (II-22), we use the transformed relation (II-37) or (II-38) in conjunction
with the transforms of (II-47) - (II-50) and initial conditions (II-51); thus

YA 2, =
3% A (sV - v,) = (1I-76)
V =sl(0,s) , U(L,s) =0, &E(L,s)=0 , (1I-77)
W _=_ 5= _
X-E=Z21I. (II1-78)

Eliminating I between (II-76) and (II-78) gives the transform of (II-53) with
Y replaced by ¥ = 1/Z:

—5 = - A7Z(sV - vo) ; (11-79)
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and hence
U=- % A\25(sV - v )@ - 0?. (11-80)
Now combining with (II-77)1 gives
- XZLZV ]
V= ’ (11-81)
2% + szzsz

so that V ~ v, /sass»o (¥>Y ), which implies V + V,  as T » 0 as required.
The linear elastlc case is recovered by setting ¥ = Y, constant Y, when
(II-81) inverts to (II-57). For the model (II- -30) leading to the transform
(11-42),

2.2

VoA L°P, (s)

vV = 55 , (11-82)
AL sP3(s) + ZYoPZ(S)

which has the structure and inversion

’ Yq 4 -a,T 4 ‘

V= i - i S g, = )

Vs VO z s + a.i ’ v ) vo Z q:e ’ Cli 1. (11 83)
i=1 i=1 i=1

The roots (-a ), i = 1,...4 of the denominator of the expression (II-82) must
be determined numerlcally once the model (II-30) is prescribed, but a
physically sensible solution implies that Re(ai ) > 0 for each root, where the
roots are real or occur in complex conjugate pairs. The time T = Ty when
V(TV) = 0, V<0in0 < Tv, must be determined numerically, and then
"rebound" in T > Ty, V < 0, investigated to see if contact is lost or if U
remain positive. The maximum stress no longer coincides with maximum strain,
so will not occur at maximum penetration. A detailed numerical solution for a
model of the form (II-30) compatible with the main features of constant stress
and constant strain-rate response would provide guidelines to viscoelastic

effects on maximum compression and stress for different impact velocities.




Part III

LINEAR VISCOELASTIC PLANE STRESS PROBLEMS
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EFFECTS OF ICE PLATE MOVEMENT ON FIXED EMBEDDED DISK

Consider the plane stress situation illustrated in Figure 3 where a

rigid disk is frozen into an ice plate, which at time t = 0 is set in motion
with prescribed velocity v(t) in the positive x; direction, with v(0) = 0.

The driving forces, ocean and atmosphere effects, are modeled by a specific
body force v in the positive x; direction with respect to fixed Newtonian axes
with origin at the disk center. Neglecting wave effects, the equilibrium
equations (I-112) of Part I in normalized variables with respect to the polar

coordinates (r,9) are

3z 3z z -z
rr

1 ro rr 8o , .2 -
=T + T 58 + = +A"Vcos 6=0,
1 g ; o, , Iro _ 2% sin 0 = 0 (D
r 38 or r sin § = ’
where Az is defined by (I-66). The traction free plate edge requires
r=1L: I, = Le=0, 0x<686sx2n, | (11152)

r=1: U =-Vecos8, U-=Vsiné y 0286 <2n, (I11-3)

during the initial period in which displacements and strains remain small, and

bonding does not fail. We are considering the situation when
§=1/L<«1; - (I11-4)

that is, the plate radius is much greater than the embedded disk radius. This
is the most simple prototype problem to model the effects on a fixed structure -
frozen into a large ice plate which is set in motion. The strain-displacement

relations are

U au U 3u U U
=T ~1_8, '« ~1_r_ _8_78 -
Err T ar ? Eee T r 38 + r ° ZErB r 36 + ar r ° (I11-5)
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The system is completed by adjoining the stress—strain relations, and initial
conditions in the viscoelastic case, namely, that the displacement and stress
are zero at time T = 0+; impulsive motion is not considered. In plane stress
gy =35 =23, =0, the transforms of the linear viscoelastic relations

zz rz 0z
(11-15) - (I11-17) give

Er =13 Ere ’ -tt - T?‘.96 = E[Ert - Eee) i
‘ (111-6)
Err * Eee * Ezz - (Err )3k Ert - Ezz =3 Err ’
and hence
E, =3I, E_=n I_-mIg Egy = B I, -m i, (III-7)
where .
5= (1 +_6k°3)/9k° , m = (3k 3 - 1)/9%, » (I1I-9)

and E is then evaluated by the last relation of (111-6). The linear elastic
relatlons are recovered by setting = Jo = 1/2g , constant, when n and m are
constants, and the relations (II1I-7) invert dlrectly to linear relations
between the strain and stress components. These are equivalent to the
relations (I-50) of Part I. Now time enters the equilibrium equations (111-1)
only as a parameter in the prescribed V(T), which transforms to sv(s), and in
the boundary velocities (III-3) which transform to sU and sUe,

respectively. Hence the system of transformed v1scoe1ast1c equations is
identical to the elastic system transform in the spatial coordinates when the

correspondence

I+ = 1/2g (m+m, n-+n) (111-9)

is made, so the transform of the viscoelastic solution is simply that of the
elastic solutlon with Jg replaced by J, which can then be inverted
(Conventional Correspondence Principle). An approximate elastic solution can
be constructed exploiting the small parameter § defined by (III-4).

The stress magnitude on the disk is determined by the prescribed

plate acceleration G, since the total body force acting on the plate is




III-3
BRC 104-85

balanced by the reaction of the fixed disk. Neglecting 62 compared to unity,

the total body force is pwlzLZG, and a measure of mean traction on the disk is

therefore
2.2
=pmt L v _1 2. -
Opean = —3ag = 3 PLLTV . (111-10)

For example, if the disk radius is 10 m and v =2 x 10'2ms'2, then

4 6

~10% > 10%m 2, astL -~ 10 100 . (III-11)

[¢]
mean

As L or v increases, pean increases as L2v, and the local maximum stress

(tension and compression) will exceed Onean®

A solution of the equilibrium equations (III-1) can be expressed in

terms of a biharmonic stress function ¢(r,8):

2 2 2 2
by (3,13 .1 3 Yfa"e  13¢_ 1 3%\ _ -
Ves= < z2r*raw t 2 2) < 2t Tt 2) =0, (II1-12)

ar r 239 r r 99
where
1as . 1 3% .
I = =c= 4% —7 ——3 = A Vr cos 0 ,
rr r or 2
r 236
= a—.?. - 2. = = .?..._ _1. .3.2>
Zee arz A"Vr cos @ , zre P (r 78/ °

(see, for example, Chapter 4 of Theory of Elasticity by S. Timoshenko and

J. N. Goodier, McGraw Hill, 1951). The body force contribution gives

zrr“ cos 8 on r = L, which must be balanced by the stress function
contribution to make the edge free of traction, which suggests that ¢ « cos 9.

A separable solution

¢ = ¢(r) cos @ (III-14)
of (III-12) gives
l ¢ = Ar3 + Br + g +Drlnr, (III-15)
- _2,D_ 2\ _
I__ =cos® <2Ar r3 o= Vr) v (III-16)
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= 2¢ . D _,% -
Iy = COS e (6Ar + r3 *Z A Vr) ’ (111-17)
= o -x,D2 : -
Ig = sin @ (?Ar 3 + r) ’ (111-18)

which do not allow Z_ and I_, to vanish simultaneously on r = L. Additional
¢ contributions proportional to @ cos 6 or 8 sin 8 could be investigated, but
a direct examination of the net force to be supplied by the disk reaction is
more fruitful.

Consider the net force (FX’FY) due to the stress field (III-16) =

(III-18) on a circle of radius r:

1]
)
A
>
<
-

(er cos 8 - I g sin 8)rde

]
o
.

(z__ sin e + I__ cos 8)rde
rr rd

/
. 2w (I1I-19)
/

and only the body force terms contribute - the ¢ terms are self-equilibrating
over all circles. Hence, onr =1L
o 12,20 _ _ B _
Fy = = 7L72 \ 7 (111-20)
where Fp is the total body force on the plate. We therefore require an
additional stress field which annuls the body force contribution

2

er =-AVL, Z _,=0,o0onr= L, and hence the net force Fy given by (III-20),

rd
and which supplies over r = 1 the extra reaction of the plate on the disk (in
the positive X; direction)

FB + wlzﬁ = anlzﬁ s, =P say 3 (I11-21)

that is, a net force P in the negative X; direction on the plate. Viewed on
the length scale L, this extra net force supplied by the disk bonding over
r = 1 looks like a point force P at the origin, so we can anticipate that such

an additional point force stress field, which is bounded over the plate, will
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provide an approximate solution. This solution is now constructed and is in
fact exact, and allows simple lead order expressions when 62 is neglected in
comparison with unity.

The stress field for a point force P at the origin along 6 = 7 (T
and G, page 113) is

- P cos 8 - -
er 4nr {4 (1 V)} 9
: (I11-22)
- _ P cos 8 - = _ P sin 8 _
z96 - 4nr (1 v) Zre 4rr (1 v) o,
where v is Poisson's ratio and
m=vn , Jo =(1l+v)n. (II11-23)

Terms with the factor (1 - v), equivalent to the D terms in (11I-16) -
(III-18), contribute zero net force over r = constant, while % er = P cos 8/nr
contributes a net force P in the positive X, direction as required. However,
the terms with factor (1 - v) are necessary for compatibility with contlnuous
U at 8 = % w3 that is, they 1mp1y a discontinuity in U which balances that
glven by the purely radial field % er = P cos 6/ar. Addltlon of further D
terms in (III-16) - (III-17), giving such a discontinuity, is not acceptable,
so combining A, C, and body force terms with the point force solution (III-22)

gives a stress field of the form

SRoosel, (L xy, gy, e, 13 _
z__ = —— 4 (r ) + (1 - v) [ ctagtec ] ’ (I11-24)
3

P sin 8 L . r L™
8 —TTFL_-_(I v) ;*a—*-c——, (I11-25)

I

= P cos 8 )_ 4

ZGB N 4L

ol L]

-c —3] o (I11-26)

The edge condition EL,. =L 0 onr =1L is now satisfied by setting

=1-a, (ITII-27)
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leaving one free parameter to satisfy two displacement conditions (III-3) on
r = 1, if possible. By construction, the net force over r = 1 is P(1 - 52) =
Fp in the positive X, direction as required.

By the relations (III-5) - (III-7) and (111-23),

L AU L (Y,

53 - Zrr ~ V%ee’ v (ae * Ur> = Zgg T Vg o
L3 B B, e
n \r 36 ar r re °

The rigid body displacement corresponding to zero stress which satisfies

Ue =0 on 6 =0, a required symmetry condition, is
= - 92 = EP_ 3 -
U =-7 becos e, U =g b sin & , (111-29)

which is compatible with the boundary condition (III-3) and can be added to
the integral of (III-28) for the stress field (I1I-24) - (III-26), introducing
a second free parameter b. For (III-24) - (III-26),

au | 3

1 °"r _ Pcos 8 AN A - - - r - e L

2 E=B2R (3 e 2v-vT) 2+ (-0 = 3va -4l g (1= v7)e 3
(111-30)

au 3
1 ) P cos @ 2 L r 2. L
= (——— + U;>= — (1 + )" =+ (1 -3 =-v)a-4]7- (1 - v)e =

30 4L 3
T
(111-31)
E]4) au U . 3
1(1 ¢ il 8) _ P sin ® _ W2\, L, L -
H (; 3__ + 3;_ ;_> = _—Z;f-— (1 v ) 2 - + 2a T + 2¢ r3 o (111-32)
Integrating (III-30),
nP cos € 2 1 r 2 1 2 L
U, = —Z; (3+2v=-v)lnr+35 (- v)[(1 - 3v)a - 4] (i) ) (1-v*)e (;
(111-33)

and now from (III-31)
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2

U=2E88 08 4 (3429 tnr- (14 w2 3 (L= W5 + va - 4] ()

2
-3 (1= v (%) ‘ . (III-34)

Substituting (III-33) and (III-34) confirms the compatibility condition
(I11-32) is satisfied. |

Adding the rigid body displacements (III-29) to (III-33) and
(III-34) and applying the boundary conditions (III-3) in the form

T
r=1: U =-qcoso, Ug =qsin8 , q(T) =f v(T')daT* , (III1-35)

o]

29 - b -2 (- (1 - 3v)a - 4] + 5 (-2,

b= (1+w?+2 -5+ va- 4] - 3 (1= vYes™2,

Hence, subtracting to eliminate q and b, and using the relation (111-27),

2 4
3 -v 4\ _ l+y 2 46 -
RS EER PRy T R

(II11-37)

3-v /4
C(l"'—:—v6>

2 - 52 (—————1""+62>=0(62)»

1 -v

which are independent of the displacement magnitude q. Thus, the stresses are
simply proportional to the acceleration V(T) through P in the elastic case
when v is constant, but for a viscoelastic plate are given by convolutions of
V(T) with various time dependent material functions. The parameter b which
enters the rigid body displacement (III-29) is now given by (III1-36), and
depends explicitly on V(T) and q(T) in the elastic case, and on various
convolutions in the viscoelastic case.

The stress at the disk interface is

P 8 2 2 -2
I__ = —-2%2-— {a(1 - 6%) + (1 = v)[-1 + a8 + cs 1},
= % 2212 cos o {1+ 0(62)} ’ (111-38)
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P sin 8 2 -2
Iy~ ——%%2—— (1 - v){-1 + as® + cs },
=- 225 sin 0 {1+ o(s2)} , (11I-39)
P 9 2 2 -2
Ty * __E%i__ {-46° + (1 - v)[-1 + 3a8° - c8 1},
= 2w cos 8 {1+ o(s2)} , (III-40)

and hence, the lead order tractions er, Zre are independent of the elastic or
viscoelastic properties, but the lead order hoop stress is proportional to
Poisson's ratio v, or a convolution of the associated v(T) in the viscoelastic
case. For an incompressible plate v = %, n = % Jo or n = % J, the stresses.
(III-24) - (I1I-26) are proportional to V and identical for both elastic and
viscoelastic shear, and the displacements are proportional to J,P or the
convolution of J(T) and P(T), respectively. With the elastic dilatation,
viscoelastic shear, model

3k J(s) - 1

3(s) = —— , (11I-41)
6koJ(s) + 1

so that both n(s) and v(s) are rational functions for the model in Part II,
and the viscoelastic transforms corresponding to (111-24) - (II1-26) and
(111-29), (III1-33), (III-34) are rational functions which invert to sums of
exponentials.

Note that the maximum normalized interface stress is ‘% AZLZVI,
which corresponds to a physical stress % plLZG which is the estimated mean
(111-10).

Complex variable methods and conformal mapping would allow solutions
for alternative disk shapes, for example, an embedded elliptic inclusion, to
investigate effects of curvature and aspect ratio. Exploiting the large plate
condition & << i may lead to relatively simple lead order approximation for
the body force, point force, plus correction stress fields construction.
Inversion of the viscoelastic transforms will show how the ratio of

acceleration and viscoelastic time scales influences the interface stresses.
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CORRELATION OF FAR-FIELD ICE PLATE STRESSES WITH
BOUNDARY DISPLACEMENTS OF AN EMBEDDED ELASTIC DISK

Consider the configuration shown in Figure 4 when the axes 0X,X, are

principal axes of the uniform far field stress. Then, as r + o}

xx 1 vy 2 Xy
£ i (z, +2,) + £ (z, -z ) cos 26
rr 2 V71 2 2 Y11 2 -

(I11-42)

1 .
Ie*"3% (zl - 22) sin 20 .

[zl + 22) - % [zl - zz) cos 26 ,

N

oo ~
where El, 22 are the principal stresses at infinity. We suppose that the
plate is initially in compression at uniform stress zZ, < o, z, < 0, and that
the far field is not disturbed by the embedding of the elastic disk. Let the
elastic disk be initially stress free and have radius 1 + §(0 < § << 1).

Consider two embedding problems:

(A) Hole of unit radius cut in plate and disk simultaneously (T = 0) embedded
and bonded (frozen on),

(B) Hole of unit radius cut in plate, contracts as boundary stress becomes
zero during instantaneous elastic response of plate, the (T = 0) disk

embedded and bonded (frozen on).

The bonding implies that no tangential slip occurs in T > 0, and that the
interface can support tension is required. Thus the interface conditions on
and of z . and z, in T > 0. Procedure (B)

0 ]
allows a tangential displacement Ue at the plate boundary r = 1 during the

r = 1 are continuity of U, and U

instantaneous stress relaxation before the disk is embedded and bonded.
Let §d, gd denote stress and displacement in the disk, and §p, QP
the stress and displacement in the plate additional to the uniform field

§°, g° in T < 0. Setting

% (z1 +1,)=-p, % (zl -5,)=5s, (II1-43)
then
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o
£ =-P + S cos 20 ,
rr
zi = - § sin 20 , (11I-44)
9 =-pP -5 cos 26
]3] ’

and g° does not influence the subsequent deformation. For procedure (A), the

jnterface conditions at r = 1 for T > 0 are

= ° P d _ .0 P -
zgr er * ztr ’ 2:re Zre * zre ? (111-45)
d = 4P d _ 4P -
U . +8=0_, Uy = Ug » (I11-46)

(1II-47)

That is, in procedure (B), the extra plate stress Zp is split into an
instantaneous relaxation Z( ) to make the hole boundary stress free, plus a
reloading Z( ) when the disk is embedded, with corresponding displacements

U(l) and U 12) The radial displacement of a boundary point is the sum of

Ugl) nd Ui ), namely Up but tangential displacement subsequent to bonding

is ng) = Ug (1). We also require, from (III-42) and (III-44),
2 P P © -
s I zee» 0 as ¢ + = . (111-48)

The solution for both problems (A) and (B) is determined, and is inverted to
express P and S in terms of the displacements of the disk boundary.

First treat the plate as elastic with the constants n, v of the
previous section, and let the disk have corresponding constants ng, Vye We
seek equ111br1um solutions of (III-1) in the absence of the body force term
(V = 0) for the plate and the disk such that Zd £’ Xp ,» and Zde, zze
incorporate the cos 26 and sin 26 terms necessary to satlsfy the traction
conditions (III-45) on r = 1, and generate Ug, Us and Ug, Ug with the same
§ dependence on r = 1 to satisfy (1II-46). In the disk, §d is bounded at

r = 0, and in the plate §p + 0 as r » ». Suitable stress fields can be




&
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constructed by symmetric and separable stress function solutions analogous to

those given by T & G, pp. 58-80, namely

d--
zrr = =~ cos 28 Ad + Cd s
£ = sin 20(A, + B rz] (I11-49)
ro d d ’
d _ 2 .
Zgg = cOs Ze(Ad + ZBdr ) + Cq s
p Y,,%), %
rr - T cOs 20 A + 2 5] * 3
r r r
p 5.5
Zre = - gin 26 5t 5 5 (II11-50)
r r
p o %
Zee = cos 20 5~ "5}
r r

which satisfy conditions at r = 0 and as r + «. Traction continuity (III-45)

gives the three relations

Cg=-P+ cp ,
Ay =-8+ Ap + zsp ; (II1-51)
Ad*Bd=-S-Ap'Bpo

Integrating the stress-displacement relations (I1I-28) subject to

the symmetry conditions

U =0 on 8 =0, /2, =, (111-52)
gives
d 2 3
Ur = - Pd cos 29{(1 + vd)Adr *3 vdBdr } + nd[l - vd)Cdr ’
(I11-53)
d . 1 3
Uy = n, sin 20{(1 + vd)Adr *3 (3 + vd)Bdr }e
and
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L n(l + v)C r-l s

P = n cos 26 )l (1 + v)A r-3 + 2B r
r 3 P P

(I11-54)

Up n sin 26

% (1 + v)Apr-3 - (1 - v)Bpr-;

(1)

The stress field I required to make r = 1 stress free is given by
the field (III-50) with coefficients A;,B;,Cy, in place of AP’BP’CP’ which

satisfy (III-51) with Ay = By = Cyq = 0. Thus
Cl = P, Bl = 28, Al =38 , (III'SS)

and hence the instantaneous tangential displacement on r = lis

1 _

Y

n S sin 2003 - v ) (I11-56)

where n,, v  are the instantaneous elastic parameters if the plate is visco~

elastic. When the far field stress is an isotropic pressure, S = 0, Ugl) = 0.
The displacement conditions (III-46) of problem (A) give
R, = nd(l - vd)cd = -6 -n(l + v)cp ,
R, =-n, {(1 +v,)A + 2,8 t=nli@+va +28 (I1I-57)
8 d d’“/da 3 d°d 3 P pl "’
(:) =n, |(1+ v, )A + L (3+v,)B.t =n L (1 +#v)A_ - (1 -v)B
d a/fa 73 d/%d 3 P pl ?
where we have written
d d _ .
us(1,8) = R_+ Ry cos 20 , Ue(l,e)-c>51n 20 . (111-58)

Thus, if the disk boundary displacement is measured, compatible with the dis-
tribution (III-§8), then R, Re, , are prescribed quantities, functions of
time when the plate is viscoelastic. The six relations (III-51) and (III-57)
determine Ad’Bd’Cd’Ap’Bp’Cp’ and hence Rr’Re’ , given P and S, or alterna-
tively, given compatible Rr’Re’ C), they determine the far field stress P and
S. The condition (III-47) of problem (B), with expression (III-56), replaces
(I11I-47)5 by
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k4
= 1 =qn i - (1 - -
® =0y [ oy + 3 o ngdnf = nliavnn - leasi-y) .
(II1-59)
By (III-51); and (III-57),,
C,=Cg+P, Cd{nd[l - vd) +n(l +v)} =-8-n(l+v)P, (III-60)
determine Cp and C4q» or
Rr + 8 Rr
-P= + (I11-61)
n(l + v) n, (1l - vd]
determines P in terms of R.. Equations (III—Sl)z 3 and (III-57)2 3 are 4
? ’
- relations for Ad’Bd’Ap’Bp’ independent of C4 and Cp, s0 S can be expressed in
terms of(:), with analogous results for problem (B) when (III-59) replaces
¥ (III-S7)3. Both sets are conveniently expressed in matrix form,vrespectively

1 0 -1 -2 EYN [ -1 R
1 1 1 1 By -1 -1
=8 or § (IT11-62)
Zvd 1 _Zi .
1 3]1+vdf 3] 1+vy AP 0 0
3vy 1 j(1=v)
1 3Il+vd| - 3 J 1-v | BP 0 n°[3-vo)
- - - - . - -
where
n(l + v) _
j= (111-63)
nd|l + vd!

The matrix determinant is
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. 123(3 + wv,)
s 3j(3 - v) 1 d _ _
= L SRR ) ; — +3 = vy{ >0, (II1-64)
s0 by Kramer's rule
1 -1 -1 -2
1 -1 1 1
ABd = )
1 0 3 ] 23/(1-v)
1 .
1 n°[3-v )] - 33 §(1=v)/(1+v)
= n, (3 -v )(1 -3+ T—él;) , (I11-65)

with n, set zero for problem (a).

Hence, for problem (A),

[=-}
W
o

y (I11-66)

and the relations (III-62) are simplified. Continuing with (A), the first two
relations of (III-62) show that

B_, (111-67)

while the last two relations confirm (III-67); and give

__ jG3 - -
Ay = %TT':'GT B, (I1I-68)

and hence

1+ v+ j(3 -V
§= 201 + V) By

(II1-69)

so that Bp, Ay, A are determined by S, all zero if S = 0. Alternatively, for

P
given H , (III-57)5 with (111-68),(II1I-69), gives

N3
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—ml+t v+ (3 ~v) _
s=-@OTToo (111-70)

For problem (B), By is given by (III-64) and (II1-65), then

=-35 -1
A,=-3B,-3B

1 _ 1+v+ j(3~-v) _
S i1 + no(3 vo) TCRED) B, » (I11~-71)
and
. 1 2
1 S )- jn(l + v)(3 - v) + 3 non(3 - vo)(l + v)
® = 5 (3 - vg)By - JL +v + 30 =9

(II1-72)

determines S if(:)is given.
Viscoelastic plate solutions are given by Laplace transforms of the
above relations with n replacead by n(s),v replaced by v(s), etc. Since P and

S are independent of T, we find, for example, that in problem (A) by (III-61):
Rr(S) + 8 Rr(S)
R T I
3(s) "4 d

(IT1I-73)

ot
vy

Thus, the measured R.(T) must be compatible with (III-73) for all time. In
particular, the instantaneous response is given by

R (0+) + & R _(0+)
r r

- P = + . (I11-74)
Iy n,(1 vdI

Since the initial elastic response of the nonlinear viscoelastic model of ice

also has high modulus and gives an infinitesimal strain, (III-74) will apply

with;Jo simply the instantaneous elastic modulus in shear. Similar conclu-

sions apply to the elastic relations (III-70) and (III-72) applied at T = 0+,

CONCLUDING REMARKS

The solution of ice force problems on time scales in which the ice

responds as a highly nonlinear viscoelastic material, solid or fluid models,
will require numerical methods. This report has formulated small strain
approximations for solids of differential type, and the complete slow flow
equations in plane stress and plane strain, when time scales are much larger

than wave travel times thrdugh the region of interest. Implicit finite
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difference schemes for time-stepping reduce the problems to a sequence of non-
homogeneous elastic problems, which could be approached by finite difference
or finite element methods. Possibly the combined space and time variable
domain can be treated by finite element methods. As integral type models .are
constructed to describe the viscoelastic response of ice, these should be
investigated in the context of boundary-value problem formulation, since the
Volterra integrals may be more tractable to fast and accurate numerical solu-
tion. An approximate integral type model matching the main features of
uniaxial compression data should be available soon, and will require extrapo-
lation to a frame indifferent tensor relation for multiaxial loading, using
plausible biaxial response in the absence of detailed data.

Further development of linear viscoelastic models which match the
main features of the nonlinear response at constant stress and constant
strain-rate at. chosen levels would be useful. Such a uniaxial correlation,
together with assumptions of isotropy and incompressibility, fully determines
the response to multiaxial loading. A key feature is the high initial elastic
modulus comparéd.t0'stress—strain ratios during creep, but analysis has indi-
cated the relative magnitudes of various material parameters needed to meet
this requirement in conjunction with other features. Given such a linear
model, a variety of contact problems could be solved to investigate the
influence of loading time scale in comparison with material time scale,
particularly on maximum stresses reached. For example, the one-dimensional
impact problem described in Part II could be solved in detail, and also the
embedded disk problem described in Part III. Such solutions will also provide
a valuable test scheme for the stability and accuracy of the time-iteration
numerical procedures in the nonlinear numerical algorithms. In addition,
solutions of simple problems for a highly nonlinear elastic model, reflecting
the dramatic change of modulus, would test the nonlinear aspects of the
spatial problem.

It may also be useful to examine loading-unloading-reloading
responses of both linear and nonlinear viscoelastic models at different
strain-rates, in particular at small strain-rates, to demonstrate that in the
stress-strain domain (uniaxial), eliminating time, they exhibit yield and
hysteresis features associated with rate-independent plasticity theory. In
particular, the sensitivity to small (nonzero) strain-rate can be examined.

Here, small strain-rate implies loading times long compared to the material

L |
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characteristic time. This aspect arose from discussions with Dr. R. Nordgren
of Shell, and the results would provide some basis for the construction of a

viscoplastic model incorporating a yield concept if this proves necessary.
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